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Abstract— Benefited from quaternion representation that is
able to encode the cross-channel correlation of color images,
quaternion principle component analysis (QPCA) was proposed
to extract features from color images while reducing the feature
dimension. A quaternion covariance matrix (QCM) of input
samples was constructed, and its eigenvectors were derived
to find the solution of QPCA. However, eigen-decomposition
leads to the fixed solution for the same input. This solution is
susceptible to outliers and cannot be further optimized. To solve
this problem, this paper proposes a novel quaternion ridge
regression (QRR) model for two-dimensional QPCA (2D-QPCA).
We mathematically prove that this QRR model is equivalent to
the QCM model of 2D-QPCA. The QRR model is a general
framework and is flexible to combine 2D-QPCA with other
technologies or constraints to adapt different requirements of
real-world applications. Including sparsity constraints, we then
propose a quaternion sparse regression model for 2D-QSPCA
to improve its robustness for classification. An alternating mini-
mization algorithm is developed to iteratively learn the solution
of 2D-QSPCA in the equivalent complex domain. In addition,
2D-QPCA and 2D-QSPCA can preserve the spatial structure
of color images and have a low computation cost. Experiments
on several challenging databases demonstrate that 2D-QPCA
and 2D-QSPCA are effective in color face recognition, and
2D-QSPCA outperforms the state of the arts.

Index Terms— 2D-principle component analysis (2D-PCA),
2D-quaternion PCA (2D-QPCA), 2D-quaternion sparse
PCA (2D-QSPCA), color face recognition, feature extraction,
partial occlusions, QPCA.

I. INTRODUCTION

PRINCIPAL component analysis (PCA) [1] is an unsu-
pervised learning approach for feature extraction and

dimension reduction. The core of PCA is to reduce the
dimension of input samples while preserving the variations in
these samples as many as possible. This is achieved by seeking
an orthonormal basis, such that when projecting samples onto
this basis, the first few dimensions retain most of the original
variations. PCA has been widely used in the fields of computer
vision and pattern recognition [2]–[7].

When being applied to extract feature from images, PCA
treats each sample as a vector, and hence, 2D images are
converted to high-dimensional (HD) vectors prior to feature
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extraction [2]. To avoid the intensive computation of HD
data, 2D-PCA [3] was proposed. 2D-PCA is computationally
efficient because it constructs the sample covariance matrix
directly from 2D images, relieving the burden of calculating
the sample covariance matrix from HD vectors. Moreover, 2D-
PCA copes with 2D matrices and, thus, preserves the spatial
structure of images [3]–[5].

Both PCA and 2D-PCA use l2-norm as measurement.
This brings at least two limitations. First, the projected
images (extracted features) are linear combinations of all
original variables, making it difficult to interpret the extracted
features; second, the l2-norm measurement is sensitive to
outliers and noise [8]. To overwhelm these limitations, the
l1-norm measurement was employed [9]–[12]. According
to the aim of using l1-norm measurement, the PCA-
based and 2D-PCA-based algorithms can be classified
into: 1) robust algorithms, e.g., PCA based on l1-
norm [13] and 2D-PCA based on l1-norm (2D-PCA-L1) [7];
2) sparse algorithms, e.g., sparse PCA (SPCA) [9]; and
3) their combinations, such as 2D-PCA-L1 with sparsity
(2D-PCA-L1S) [14] and generalized 2D-PCA (G2D-PCA)
(l p-norm, 0 < p < 2) [15]. The robust algorithms use l1-norm
to measure errors, alleviating the influence of outliers [13].
However, they do not have rotation invariance, which is an
essential property of l2-norm-based PCA algorithms and
is in favor with learning algorithms [16], [17]. The sparse
algorithms regularize the objective functions using l1-norm
penalties for sparse feature extraction. Projecting images onto
the sparse basis, the sparse algorithms rely on the important
variables and ignore the less important variables. This is
helpful to discover the underlying patterns on the images.
The combination algorithms minimize l1-norm-based errors
while extracting sparse features, inheriting the strengths and
drawbacks of the robust and the sparse algorithms.

To process color images, the aforementioned methods treat
three color channels independently or concatenate the repre-
sentations of different color channels into large matrices and,
thus, fail to consider the cross-channel correlation [18]–[20].
Nevertheless, this correlation is important for recognition [21].
To preserve the cross-channel correlation, tensor representa-
tion (TR) [22], reduced biquaternion representation (BR) [23],
and quaternion representation (QR) [25]–[27] were utilized
to represent color images. TR uses third-order tensors to
represent color images, and multilinear PCA (MPCA) [28] and
multilinear SPCA (MSPCA) [29] were proposed based on TR.

BR and QR employ the Clifford algebra to represent color
images. The Clifford algebra yields an excellent represen-
tation for the rotation group [30]. It has shown promis-
ing performance in the application of computer vision [30].
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However, the reduced biquaternions cannot form a division
system [23], [30]. This results in the inelegant forms in
the mathematical derivations of BR. Reduced biquaternion
PCA (BPCA) and 2D-BPCA [23] represent color images
using BR. Meanwhile, QR transforms color images into an
orthogonal color space, resulting in the superiority for the
discriminative task [31]. Quaternion PCA (QPCA) [25] con-
verts each color image into an HD quaternion vector and,
hence, endures high computation cost and the loss of the
spatial structure of color images. Row-based 2D quaternion
PCA (R2D-QPCA) [32] solves the above-mentioned prob-
lems by directly processing quaternion matrices. Essentially,
R2D-QPCA works in the row direction of images [5], [33].

This paper first proposes 2D-QPCA to preserve the spatial
structure of color images. To find optimal projection bases,
existing QPCA-based algorithms (see [25], [32]) construct the
quaternion covariance matrices (QCMs) and find their solu-
tions via quaternion eigen-decomposition (QED). However,
the solution of eigen-decomposition is fixed and is inflex-
ible to adapt different applications. To address this issue,
we further propose 2D-QSPCA. Our contributions are listed
as follows.

1) In addition to the QCM model, we propose a novel
quaternion ridge regression (QRR) model for 2D-QPCA,
and then mathematically prove that this QRR model is
equivalent to the QCM model of 2D-QPCA. To the
best of our knowledge, we are the first to introduce
the QRR model for the QPCA-based algorithms. The
QRR model is a general framework that offers the
great flexibility to combine 2D-QPCA with additional
assumptions to regularize the solution of 2D-QPCA to
fit various real-world applications.

2) Combining the QRR model with sparse regularization,
we further propose a quaternion sparse regression (QSR)
model for 2D-QSPCA to improve the robustness of
2D-QPCA.

3) We propose an alternating minimization algorithm to
iteratively learn the solution of 2D-QSPCA in the equiv-
alent complex space. In each iteration, the optimization
is designed under the framework of the complex-valued
Alternating Direction Method of Multipliers (complex
ADMM).

4) The effectiveness of 2D-QPCA and 2D-QSPCA is veri-
fied by the application of color face recognition. Exper-
iments show that 2D-QPCA and 2D-QSPCA can well
recognize color face images with varying expressions,
and 2D-QSPCA is robust to partial occlusions.

In the rest of this paper, Section II provides the background
knowledge. Section III introduces two equivalent models for
2D-QPCA. Section IV proposes a QSR model for 2D-QSPCA,
elaborates its solution, and discusses the benefit from sparse
regularization. The effectiveness of the proposed algorithms
is demonstrated by the application of color face recog-
nition in Section V. We discuss and compare the pro-
posed methods in Section VI. Finally, conclusions are drawn
in Section VII.

II. PRELIMINARIES

In this paper, we represent scalars, vectors, and matrices
in real space (R) and complex space (C) using lowercase
letters, bold lowercase letters, and bold uppercase letters,
respectively, e.g., a, a, and A. A dot above the variable is
used to denote variables in quaternion space (H), e.g., ȧ, ȧ,
and Ȧ.

Tr(·) represents the trace of a matrix and Re(·) denotes the
real (scalar) part of a complex or quaternion variable.

A. Quaternion Representation

1) Quaternion Numbers: The quaternions are a 4D number
system [34], which is an extension of the complex number
system. A quaternion number (q̇ ∈ H) has four parts, i.e., one
real part and three imaginary parts. It can be represented as

q̇ = q0 + q1i + q2 j + q3k (1)

where q0, q1, q2, q3 ∈ R and {1, i, j, k} is the basis satisfying

i2 = j2 = k2 = i jk = −1 (2)

i j = − j i = k, jk = −k j = i, ki = −ik = j. (3)

Following (2) and (3) and the distributive law, the mul-
tiplication of two quaternion numbers is noncommutative,
i.e., ṗq̇ �= q̇ ṗ in general. Two widely used operators of
quaternion numbers are:

1) conjugate: q̇ = q0 − (q1i + q2 j + q3k);
2) modulus: |q̇| = (q̇q̇)1/2 = (q̇q̇)1/2 =

(q2
0 + q2

1 + q2
2 + q2

3 )1/2.

2) Quaternion Vectors and Matrices: Let Q̇ = (q̇s,t) ∈
H

m×n , where s = 1, . . . , m and t = 1, . . . , n are the row
and column indices, respectively. Then,

1) conjugate: Q̇ = (q̇st) ∈ H
m×n .

2) transpose: Q̇T = (q̇ts) ∈ H
n×m .

3) conjugate transpose: Q̇∗ = (Q̇)T = Q̇T = (q̇ts) ∈
H

n×m .
4) Q̇ is Hermitian if Q̇∗ = Q̇.

The following gives some definitions and properties on
quaternion vectors and matrices.

Definition 1: Let q̇ = (q̇s) ∈ H
m , where s = 1, . . . , m is a

position index. The l1-norm and l2-norm of q̇ are defined as
‖q̇‖1 =∑m

s=1 |q̇s | and ‖q̇‖2 = (
∑m

s=1 |q̇s |2)(1/2), respectively;
let Q̇ = (q̇s,t) ∈ H

m×n . The F-norm of Q̇ is defined as
‖Q̇‖F = (

∑m
s=1
∑n

t=1 |q̇s,t |2)(1/2) = [Tr(Q̇∗Q̇)](1/2).
The noncommutativity of quaternion multiplication makes

it quite difficult to cope with quaternion matrices. As pointed
in [35], one of the effective approaches to process quaternion
matrices is to convert them into pairs of complex matrices.

Definition 2: Let Q̇ = Q0 + Q1i + Q2 j + Q3k ∈
H

m×n , Q0, Q1, Q2, Q3 ∈ R
m×n . The Cayley–Dickson

construction [36] represents Q̇ using an ordered pair of com-
plex matrices

Q̇ = Qa + Qb j (4)

where Qa = Q0 +Q1i , Qb = Q2 +Q3i , and Qa, Qb ∈ C
m×n .
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Definition 3: Let Q̇ = Qa + Qb j ∈ H
m×n . The complex

adjoint form [35] of Q̇ is formulated as

χQ̇ =
[

Qa Qb

−Qb Qa

]

(5)

where χQ̇ ∈ C
2m×2n . Q̇ and χQ̇ are isomorphic [35]. The

complex adjoint form has been widely used for quaternion
matrix analysis, including QED [35] and quaternion singular
value decomposition (QSVD) [37].

Properties: Let Ṗ, Q̇ ∈ H
m×m . Then [35],

1. (ṖQ̇)∗ = Q̇∗Ṗ∗.
2. (χQ̇)∗ = χQ̇∗ .
3. χ(Ṗ+Q̇) = χṖ + χQ̇.
4. χṖQ̇ = χṖχQ̇.
5. 2‖Q̇‖2

F = 2Tr(Q̇∗Q̇) = ‖χQ̇‖2
F = Tr(χQ̇∗χQ̇).

B. 2D-PCA

Let {Xi ∈ R
m×n}h

i=1 denote a set of 2D samples. The aim
of 2D-PCA is to find a set of orthonormal projection basis
vectors, denoted by the columns of V = [v1, . . . , vk], such
that, when projected onto V, the projected samples have the
maximal scatter [5]. We define Yi = VT Xi as the projected
sample of Xi . The scatter of the projected samples, denoted
by J (V), can be characterized by the trace of the covariance
matrix of these projected samples. Assuming that all samples
are mean-centered, i.e., E(Xi ) = 0, the objective of 2D-PCA
is to maximize

J (V) = Tr{E[(Y − EY)(Y − EY)T ]}
= Tr{E[(VT Xi − E(VT Xi ))(VT Xi − E(VT Xi ))

T ]}
= Tr{VT E[(Xi − E(Xi ))(Xi − E(Xi ))

T ]V}
= Tr[VT E(Xi XT

i )V] (6)

in which

� = E
(
Xi XT

i

) = 1

h

h∑

i=1

(
Xi XT

i

)
(7)

is actually the covariance matrix of the input samples.
Rewriting (6) with (7), together with the orthonormal

constraint on the projection basis, the objective function of 2D-
PCA is expressed by

V̂ = arg max
V

[Tr(VT �V)] (8)

s.t. VT V = Ik

where the optimal columns of V are the eigenvectors of �
corresponding to the first k largest eigenvalues [3], [5].

III. 2D-QPCA

This section first constructs a QCM model for 2D-QPCA.
We then introduce a novel QRR model for 2D-QPCA and
prove that the solution of this QRR model is mathematically
equivalent to that of the QCM model. Finally, we compare
and discuss the two models.

A. QCM Model for 2D-QPCA

Similar to 2D-PCA, the objective of 2D-QPCA is to find an
orthonormal quaternion basis so that the projected quaternion
samples have the largest scatter after projection. Let the
columns of V̇ = [v̇1, . . . , v̇k] be the optimal quaternion basis
vectors, {Ẋi ∈ H

m×n}h
i=1 and {Ẏi ∈ H

k×n}h
i=1 be the set

of 2D quaternion samples and the set of projected quaternion
samples, respectively. Without the loss of generality, all quater-
nion samples are mean-centered, i.e., E(Ẋi ) = 0. 2D-QPCA
seeks optimal V̇ that maximizes the scatter of the projected
quaternion samples. This scatter can be characterized by the
trace of the QCM of the projected quaternion samples as

J (V̇) = Tr{E[(Ẏ − EẎ)(Ẏ − EẎ)∗]}
= Tr{E[(V̇∗Ẋi − E(V̇∗Ẋi ))(V̇∗Ẋi − E(V̇∗Ẋi ))

∗]}
= Tr{V̇∗E[(Ẋi − E(Ẋi ))(Ẋi − E(Ẋi ))

∗]V̇}
= Tr[V̇∗E(Ẋi Ẋ∗

i )V̇] (9)

in which

�̇ = E
(
Ẋi Ẋ∗

i

) = 1

h

h∑

i=1

(
Ẋi Ẋ∗

i

)
(10)

is the QCM of the input quaternion samples.
The QCM model of 2D-QPCA can be expressed by

ˆ̇V = arg max
V̇

[Tr(V̇∗�̇V̇)] (11)

s.t. V̇∗V̇ = Ik .

The solution of (11) can be computed via QED on �̇ [25].
Let the Hermitian matrix �̇ admit a QED as

�̇ = Ẇ�r Ẇ∗ (12)

where r is the rank of �̇, �r is a real diagonal matrix, and the
diagonal elements of �r are arranged in a decreasing order.
Then, the eigenvectors of �̇ are the solution of 2D-QPCA.
That is, V̇ = Ẇ(:, 1 : k), k ≤ r . The procedures to solve the
QCM model of 2D-QPCA are given in Algorithm 1.

Algorithm 1: Solving the QCM Model of 2D-QPCA

Input : Training set {Ẋi }h
i=1 and the dimension k.

Output: Optimal projection basis V̇ = [v̇1, ..., v̇k].
1 Calculate the quaternion covariance matrix of input

samples: �̇ = 1
h

h∑

i=1
(Ẋi Ẋ∗

i ).

2 Perform QED: �̇ = Ẇ�r Ẇ∗.
3 V̇ = Ẇ(:, 1 : k), k ≤ r .

A similar idea that constructs the QCM model directly
from quaternion matrices also exists in R2D-QPCA [32].
Essentially, R2D-QPCA operates on the image rows, while
our 2D-QPCA is working in the column direction. Thus, our
2D-QPCA and R2D-QPCA are suitable to capture different
patterns. This can be demonstrated in [32] and our experiments
in Section V-B3.
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B. QRR Model for 2D-QPCA

For the QCM model of 2D-QPCA, QED is an efficient and
off-the-shelf technique to find the solution. In this section,
we further design a more flexible QRR model for 2D-QPCA
and prove that the solution of this QRR model is equivalent
to that of the QCM model (Theorem 1).

Under the constraint of least-squares error, maximizing
the scatter of projected quaternion samples is equivalent to
minimizing the reconstruction error between projected quater-
nion samples and the input quaternion samples [37]. Hence,
the solution of (11) equals to the solution of its dual problem:
ˆ̇B = arg min

Ḃ
(
∑h

i=1 ‖Ẋi − ḂḂ∗Ẋi‖2
F ) subject to Ḃ∗Ḃ =

Ik . Based on this observation, we propose the QRR model
of 2D-QPCA.

Theorem 1: Let {Ẋi ∈ H
m×n}h

i=1 be a set of 2D quaternion
samples and V̇ = [v̇1, . . . , v̇k] be the solution of (11).

For any λ2 ≥ 0, suppose that Ȧ = [ȧ1, . . . , ȧk] ∈ H
m×k and

Ḃ = [ḃ1, . . . , ḃk ] ∈ H
m×k satisfy

( ˆ̇A, ˆ̇B) = arg min
Ȧ,Ḃ

(
h∑

i=1

‖Ẋi − ȦḂ∗Ẋi‖2
F + λ2‖Ḃ‖2

F

)

s.t. Ȧ∗Ȧ = Ik . (13)

Then, v̇ j = (ḃ j /‖ḃ j‖2), j = 1, 2, . . . , k. The proof of
Theorem 1 is given in the Appendix.

Equation (13) gives the QRR model of 2D-QPCA. The
penalty term λ2‖Ḃ‖2

F is used to avoid the potential colinearity
problem when the number of input samples is much smaller
than the dimension of input samples [38].

C. Discussion
Theorem 1 reveals that the solution of the QRR model is

equivalent to that of the QCM model. For 2D-QPCA, we can
directly obtain its solution of the QCM model via eigen-
decomposition. However, this solution lacks of flexibility. For
example, the data may contain noise and the sparse regulariza-
tion is desired to correctly discover the underlying patterns. In
this case, the QCM model fails. Fortunately, the QRR model
provides a feasible and flexible framework to deal with this
problem since the regression model can be easily combined
with different regularizers for further optimization.

IV. 2D-QSPCA
As verified in [8] and [28], the sparse PCA-based algorithms

help to interpret the projected samples and are robust to out-
liers and noise. Taking the advantages of sparse regularization,
this section proposes 2D-QSPCA to improve the robustness
of 2D-QPCA. The 2D-QSPCA is formulated as a QSR model
by combining the QRR model with sparse regularization.
This also shows the advantages of the QRR model as a
general framework. We design a novel algorithm to solve
this QSR model. Afterward, we provide a simulation example
to demonstrate that 2D-QSPCA can discover the underlying
patterns in the presence of noise.

A. QSR Model for 2D-QSPCA

Regularizing the QRR model of 2D-QPCA with the
l1-norm penalties, we propose a QSR model for 2D-QSPCA.

Fig. 1. Comparison of the projection bases of 2D-QPCA and 2D-QSPCA
with (a) inliers and (b) inliers and outliers.

Theorem 2: Let {Ẋi ∈ H
m×n}h

i=1 be a set of 2D quaternion
samples and the columns of V̇s = [v̇s1, . . . , v̇sk] be the
quaternion sparse basis vectors of 2D-QSPCA. V̇s can be
obtained as follows.

For any λ2 ≥ 0 and λ1, j ≥ 0, j = 1, . . . , k, suppose that
Ȧ = [ȧ1, . . . , ȧk] ∈ H

m×k and Ḃ = [ḃ1, . . . , ḃk ] ∈ H
m×k

satisfy

( ˆ̇A, ˆ̇B) = arg min
Ȧ,Ḃ

⎛

⎝
h∑

i=1

‖Ẋi − ȦḂ∗Ẋi‖2
F

+ λ2‖Ḃ‖2
F +

k∑

j=1

λ1, j‖ḃ j ‖1

⎞

⎠

s.t. Ȧ∗Ȧ = Ik . (14)

Then, v̇s j = (ḃ j/‖ḃ j ‖2), j = 1, 2, . . . , k.
Theorem 2 presents the QSR model for 2D-QSPCA. It is

obvious that if λ1, j = 0 for j = 1, . . . , k, (14) reduces to
the QRR model, and the obtained basis vectors are not sparse.
Applying different coefficients to the l1-norm penalties, this
QSR model can provide a flexible control on the sparsity of
its basis vectors.

Compared with 2D-QPCA, the sparse regularization on the
projection basis of 2D-QSPCA brings at least the following
three benefits:

1) The projected quaternion samples are obtained from
only a few original variables, making it easier to interpret
the projected samples.

2) Adopting sparse feature extraction, 2D-QSPCA is robust
to outliers and, thus, beneficial for classification.

3) Sparse regularization helps to identify the important
variables, which are associated with the underlying
patterns in the presence of noise.

The first two properties can be illustrated in Fig. 1, and
property (3) will be examined in Section IV-C. In Fig. 1,
the data points represent quaternion samples whose values
are denoted by the quaternion modulus for visualization, and
each arrowed line represents the direction of the basis vector
corresponding to the first principle component. Considering
property (1), the basis vector of 2D-QPCA is the combination
of the original variables 1 and 2, whereas that of 2D-QSPCA
is associated only with the original variable 1. Thus, the pro-
jected samples of 2D-QSPCA can be represented using less
original variables. For property (2), the direction of the basis
vector of 2D-QPCA is easily influenced by outliers while that
of 2D-QSPCA is resistant to outliers.
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B. Solution of 2D-QSPCA

Owning to the noncommutativity of quaternion multi-
plication, directly solving the QSR model in quaternion
space is quite difficult. To solve quaternion-valued models,
different transformations have been utilized. For instance,
Zou et al. [39] defined specific operators to convert the mod-
els in quaternion space into the models in real space, and
QED [35] and QSVD [37] were implemented by transferring
the quaternion-valued models into complex-valued models.
In this paper, we reformulate (14) into an equivalent complex
form. To start with, the converting of the quaternion l1-norm
to its equivalent complex form is given in Definition 4.

Definition 4: Let q̇ = qa + qb j ∈ H
m and q be the

first column of χq̇, i.e., q = χq̇(:, 1) = [qa; −qb] ∈ C
2m .

We define an operator as

ξ(q) = [qT
a ; qT

b

]

where ξ(q) ∈ C
2×m . Then, the l1-norm of q̇ equals the l2,1-

norm of matrix ξ(q), i.e.,

‖q̇‖1 = ‖ξ(q)‖2,1

where ‖M‖2,1 denotes the l2,1-norm of M ∈ C
n×m , and it is

defined as ‖M‖2,1 =∑m
j=1 ‖M(:, j)‖2.

The quaternion F-norm terms in (14) can be easily trans-
formed into complex space using the complex adjoint form
(see the Appendix).

Let α = χȦ ∈ C
2m×2k , β = χḂ ∈ C

2m×2k , and ϕ =
∑h

i=1 χẊi
χẊ∗

i
∈ C

2m×2m . There are two observations that are
useful to rewrite (14): 1) ϕ is Hermitian and Tr(α∗ϕβ) is the
conjugate of Tr(β∗ϕα) and 2) the complex adjoint form has a
redundant structure, and we can derive the right half columns
of any complex adjoint matrix from its left half columns.

Equation (14), thus, can be converted into an complex
form as

(α̂, β̂) = arg min
α,β

⎧
⎨

⎩
Trϕ−2Re[Tr(α∗ϕβ)] + Tr[β∗(ϕ + λ2I)β]

+ 2
k∑

j=1

λ1, j‖ξ(β j )‖2,1

⎫
⎬

⎭

= arg min
α,β

⎧
⎨

⎩

k∑

j=1

[β∗
j (ϕ + λ2I)β j − 2Re(α∗

j ϕβ j )

+ λ1, j‖ξ(β j )‖2,1]
⎫
⎬

⎭

s.t. α∗α = I2k (15)

where β j is the j th column of β, j = 1, . . . , k.
We propose an alternating minimization algorithm to itera-

tively solve (15).
1) Fixing α, Find Optimal β: Given α, (15) reduces to

individually solve the subproblem

β̂ j =arg min
β j

[
β∗

j (ϕ+λ2I)β j −2Re
(
α∗

j ϕβ j
)+λ1, j‖ξ(β j )‖2,1

]

for j = 1, . . . , k. (16)

Due to the sum-of-norms regularization (l2,1-norm penal-
ties), there is no closed-form expression for optimal β j .
We devise an algorithm to solve (16) under the complex
ADMM framework [40]. Setting Z = ξ(β j ), the idea of com-
plex ADMM is to convert (16) to a constrained optimization
problem as

arg min
β j ,Z

{
β∗

j (ϕ + λ2I)β j − 2Re
(
α∗

j ϕβ j
)+ λ1, j‖Z‖2,1

}

s.t. Z = ξ(β j ) (17)

and optimize its augmented Lagrangian function

L(β j , Z, y) = β∗
j (ϕ + λ2I)β j − 2Re

(
α∗

j ϕβ j
)+ λ1, j‖Z‖2,1

+ y∗[β j − ξ−1(Z)] + ρ

2
‖β j − ξ−1(Z)‖2

2 (18)

where ξ−1(·) is the inverse operator of ξ(·) that concatenates
the transpose of the rows of a 2 × m matrix into a 2m × 1
vector, y is the Lagrangian multiplier, and ρ > 0 is the penalty
parameter. The iterative scheme to optimize L(β j , Z, y) is

βτ+1
j = arg min

β j
L(β j , Zτ , yτ ) (19)

Zτ+1 = arg min
Z

L(βτ+1
j , Z, yτ ) (20)

yτ+1 = yτ + ρ
[
βτ+1

j − ξ−1(Zτ+1)
]

(21)

where in each iteration, β j , Z,andy are updated one by one
when other two variables are fixed.

Based on the above-mentioned scheme, we devise the
iterative procedure to solve (18). Specifically, given the result
of the τ th iteration, the variables in the (τ + 1)th iteration are
updated by following the three steps.

1) Update βτ+1
j by minimizing L with respect to β j when

(Zτ , yτ ) are fixed. This is implemented by setting the
gradient of L with respect to β j to 0

βτ+1
j = [ϕ + (λ2 + ρτ )I]−1[ϕα j + ρτ ξ−1(Zτ ) − yτ ].

(22)

2) Update Zτ+1 by minimizing L with respect to Z when
(βτ+1

j , yτ ) are fixed. Considering Z, the optimization of
L is to find

min
Z

{
ρτ

2

∥
∥βτ+1

j − ξ−1(Z)
∥
∥2

2

+ y∗[βτ+1
j − ξ−1(Z)

]+ λ1, j‖Z‖2,1

}

= min
Z

{
1

2

∥
∥
∥
∥β

τ+1
j − ξ−1(Z) + yτ

ρτ

∥
∥
∥
∥

2

2
+ λ1, j

ρτ
‖Z‖2,1

}

= min
Z

{
1

2

∥
∥
∥
∥ξ

−1(Z)−
(

βτ+1
j + yτ

ρτ

)∥
∥
∥
∥

2

2
+ λ1, j

ρτ
‖Z‖2,1

}

= min
Z

{
1

2

∥
∥
∥
∥Z − ξ

(

βτ+1
j + yτ

ρτ

)∥
∥
∥
∥

2

F
+ λ1, j

ρτ
‖Z‖2,1

}

.

(23)

This way, the solution of (23) can be found using
Lemma 1, which is a soft-thresholding process derived
from the sum-of-norms regularized optimization in [39]
and [40].
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Lemma 1: If a problem considering Z ∈ C is to find

Ẑ = arg min
Z

{
1

2
‖Z − R‖2

F + σ‖Z‖2,1

}

. (24)

The optimal Z is obtained at

Ẑ(:, i) =
⎧
⎨

⎩

‖R(:, i)‖2 − σ

‖R(:, i)‖2
R(:, i), ‖R(:, i)‖2 > σ

0, otherwise.
(25)

3) Update yτ+1 using (21) when (βτ+1
j , Zτ+1) are fixed.

Let the primal residual r τ+1
pri = βτ+1

j − ξ−1(Zτ+1) and

the dual variable residual r τ+1
dual = ρ(Zτ+1 − Zτ ). The stop-

ping criterion of the complex ADMM framework is set to
‖r τ+1

pri ‖2 < εpri and ‖r τ+1
dual ‖F < εdual, and εpri and εdual are

small numbers [40].
The initialization of the penalty parameter ρ should be small

to obtain an optimal solution [41]. However, this may lead
the proposed algorithm converges too slowly. In this paper,
we employ a simple yet effective scheme introduced in [41]
to adjust ρ according to the primal and dual variable residuals.
The scheme is defined as

ρτ+1 =

⎧
⎪⎨

⎪⎩

νincrρτ , if ‖r τ
pri‖2 > μ‖r τ

dual‖F

ρτ /νdecr, if ‖r τ
dual‖2 > μ‖r τ

pri‖F

ρτ , otherwise

(26)

where μ, νincr,νdecr > 1 are predefined parameters. We set
μ = 10 and νincr = νdecr = 2 as recommended in [41].

Finally, the proposed method to solve (16) is summarized
in Algorithm 2. The same operations are performed indepen-
dently to find the optimal β j , j = 1, . . . , k. Due to the redun-
dant structure of complex adjoint form, for j = k +1, . . . , 2k,
we can deduce the optimal β j from the optimal β j−k .

2) Fixing β, Find Optimal α: Given β, the minimization of
(15) with respect to α is equivalent to find

α̂ = arg max
α

Re[Tr(α∗ϕβ)]
s.t. α∗α = Ik (27)

Algorithm 2: Computing β j

Input : ϕ, α j , λ2, λ1, j , ε pri , and εdual .
Output: Optimal β j .

1 Convert (16) to a constrained problem (17), and
construct the augmented Lagrangian function as (18).

2 Initialize β0
j = 0, Z0 = 0, y0 = 0, and ρ0 = 10−3.

3 repeat
4 Update βτ+1

j using (22).
5 Update Zτ+1 using (25).
6 Compute r τ+1

pri = βτ+1
j − ξ−1(Zτ+1), and

r τ+1
dual = ρτ (Zτ+1 − Zτ ).

7 Update yτ+1 using (21).
8 Adjust ρτ+1 using (26).
9 until ‖r τ+1

pri ‖2 ≤ ε pri and ‖r τ+1
dual‖F ≤ εdual ;

10 Output βτ+1
j .

where α can be solved using Lemma 2 by setting η = ϕβ.
Lemma 2: Let α, η ∈ C

m×k and the rank of η be k (k < m).
Consider the optimization

α̂ = arg max
α

Re[Tr(α∗η)]
s.t. α∗α = Ik . (28)

Suppose that the SVD of η is η = Uη�ηV ∗
η , then α̂ = UηV ∗

η .
Please refer to the orthogonal Procrustes problem in the

complex domain [42] for the proof of Lemma 2.
The alternating minimization algorithm starts at any α∗α =

I2k . To make this algorithm converge fast, the initialization
of α is set to the complex adjoint form of the solution of
2D-QPCA. The stopping condition is the convergence of all
columns of β. Let ξ(β j ) be the residual of the j th column of
β. The alternating minimization algorithm stops when ξ(β j ) <
εouter for j = 1, . . . , k, where εouter is a small number.

Afterward, we can recover the quaternion-valued solution
from the complex-valued solution using the operator in Defi-
nition 5 [37].

Definition 5: Given a complex column vector c =
[c1, c2, . . . , cn, cn+1, cn+2, . . . , c2n]T ∈ C

2n , we define an
operator γ (c): C

2n → H
n such that

γ (c) =

⎡

⎢
⎢
⎣

c1
c2
· · ·
cn

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

−cn+1
−cn+2

· · ·
−c2n

⎤

⎥
⎥
⎦ j. (29)

The quaternion sparse projection basis [v̇s1, . . . , v̇sk] of
2D-QSPCA can be recovered from the columns of β using:
v̇s j = γ (β j/‖β j‖2), j = 1, . . . , k. The detail procedures of
2D-QSPCA are listed in Algorithm 3.

C. Discussion

In real applications, the data set often contains noise. The
important variables are associated with the underlying patterns
in the presence of noise. The original PCA algorithm uses
l2-norm measure. Its basis vectors are linear combinations
of all variables and, hence, may misidentify the important
variables and underlying patterns. SPCA can identify the sets
of important variables [9], so can 2D-QSPCA.

A straightforward way to obtain the sparse basis is to first
find the original basis, manually set a threshold, and then
discard the variables whose absolute values are smaller than
the threshold. However, this simple thresholding approach also
suffers from the misidentification problem [9].

To examine the ability of 2D-QSPCA in identifying the sets
of important variables, we extend the synthetic example in [9]
to quaternion domain and compare the results of 2D-QSPCA
with 2D-QPCA and the simple thresholding method. First,
we generate three quaternion hidden factors following the
quaternion normal distribution (Ṅ ) [43]:

ḟ1 ∼ Ṅ (0, 290), ḟ2 ∼ Ṅ (0, 300)

ḟ3 = −0.3 ḟ1 + 0.925 ḟ2 + �̇

�̇ ∼ Ṅ (0, 1)

ḟ1, ḟ2, and �̇ are independent.
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TABLE I

COMPARISON OF 2D-QPCA, 2D-QSPCA, AND THE SIMPLE THRESHOLDING METHODS

Algorithm 3: 2D-QSPCA

Input : Training set {Ẋi }h
i=1, the dimension k, and

parameters λ2, λ1, j , j = 1, ..., k, εouter.
Output: Optimal quaternion sparse projection basis

[v̇s1, ..., v̇sk].
1 Rewrite 2D-QSPCA into its complex form (15). Convert

the task to find α = [α1, ..., α2k] and β = [β1, ..., β2k].
2 Initialize α to the complex adjoint form of the solution

of 2D-QPCA.
3 repeat
4 (1) Fixing α, find optimal β.
5 for j = 1, ..., k, do
6 Compute β j using Algorithm 2.
7 Compute residual ξ(β j ).
8 end
9 for j = k + 1, ..., 2k, do

10 Derive β j from β j−k .
11 end
12 (2) Fixing β, find optimal α. Let ϕβ = U�V ∗, set

α̂ = U V ∗, where ϕ =
h∑

i=1
χẊi

χẊ∗
i
.

13 until ξ(β j ) < εouter for j = 1, ..., k;
14 for j = 1, ..., k, do
15 Recover v̇s j from β j using v̇s j = γ (

β j
‖β j ‖2

), where
γ (·) is a recover operator in Definition 5.

16 end
17 Output [v̇s1, ..., v̇sk].

Then, 25 observed quaternion variables are generated

ẋi = ḟ1 + �̇1
i , �̇1

i ∼ Ṅ(0, 1), i = 1, . . . , 10
ẋi = ḟ2 + �̇2

i , �̇2
i ∼ Ṅ(0, 1), i = 11, . . . , 20

ẋi = ḟ3 + �̇3
i , �̇3

i ∼ Ṅ(0, 1), i = 21, . . . , 25
{
�̇

j
i

}
are independent, i = 1, . . . , 25, j = 1, 2, 3.

ẋ = [ẋ1, . . . , ẋ25]T ∈ H
25 is used to generate synthetic

samples. For simplicity, we use this 1D example because: 1) it
can be regarded as a special case of a 2D model in which the
column number equals one and 2) in this simulation, we aim
to illustrate the ability of 2D-QSPCA in identifying the sets of
important variables and, hence, the spatial structure of samples
can be ignored. The spatial structure is more important when
the samples are 2D.

The variances of hidden factors ḟ1, ḟ2, and ḟ3 are 290, 300,
and 283.79, respectively. Thus, ḟ2 is slightly important
than ḟ1, and both of them are more important than ḟ3. The
numbers of associated variables with ḟ1, ḟ2, and ḟ3 are

10, 10, and 5, respectively. Ideally, after dimension reduction,
the first two principle components (denoted by PC1 and
PC2) should explain 0.996 ((301 + 291)/(301 + 291 + 2))
of the total variance. Based on the priori knowledge, if we
set the number of basis vectors to k = 2 and restrict
the nonzero elements on each basis vector to 10, then to
correctly discover the underlying patterns, the first basis vector
(v̇1) should recover ḟ2 using the set of important variables
(0, . . . , ẋ11, . . . , ẋ20, 0, . . . , 0), while the second basis vector
(v̇2) should recover ḟ1 using the set of important variables
(ẋ1, . . . , ẋ10, 0, . . . , 0).

Since quaternion numbers have four dimensions, it is hard
to directly compare the absolute values. Instead, we use
the norms of the quaternion numbers for comparison.
Following [44], we record true positive rate (TPR) and true
negative rate (TNR) values for each basis vector to evaluate
the algorithms’ ability in correctly identifying the sets of
important variables, and rejecting the less important variables,
respectively. For both measures, the higher value indicates
the better performance. We generate 1000 quaternion samples
from the above-mentioned model and run the simulation
100 times to avoid the interference of randomness. The
TPR and TNR values for each basis vector and the vari-
ance of the corresponding principle component are reported
in Table I. The 2D-QPCA can explain most of the vari-
ance in the data set. However, its basis vectors combine
all variables and cannot reject the less important variables
(TNR = 0). The 2D-QSPCA obtains TPR = 0.9805 and
TNR = 0.9717, indicating that it can correctly identify
the sets of important variables and reject the less important
variables in most cases. For both TPR and TNR, the simple
thresholding method achieves worse results than the proposed
2D-QSPCA. This simulation example verifies the effective-
ness of 2D-QSPCA in identifying the sets of important
variables.

The ability of 2D-QPCA and 2D-QSPCA in dimension
reduction can also be verified using this example. We observed
that the first two principle components of 2D-QPCA and
2D-QSPCA can explain 0.996 and 0.7841 of total variances,
respectively. That is, they are able to use a few dimensions to
represent most of the variations in the data set and, hence, can
be employed for dimension reduction. Considering dimension
reduction, 2D-QPCA performs better than 2D-QSPCA because
2D-QPCA can explain more variances using a fixed number
of principle components. This is because 2D-QPCA provides
the most compact representation of the data set under the
constraint of least square error, while 2D-QSPCA balances
the ability of maximizing the explained variances and that of
discovering the underlying patterns.
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Fig. 2. Sample color face images of one person from (a) AR database,
(b) EURECOM Kinect database, (c) color FERET database, (d) CMU PIE
database, and (e) Georgia tech face database.

V. EXPERIMENTS ON COLOR FACE RECOGNITION

To validate the performance of 2D-QPCA and 2D-QSPCA,
we employ color face recognition as an application exam-
ple. In Section V-A, we describe the experimental settings.
The recognition performance of 2D-QPCA and 2D-QSPCA
is compared with that of peer algorithms in Section V-B.
Section V-C statistically evaluates the performance of the
competing algorithms.

A. Experiment Settings

In this section, we introduce the databases, the competing
algorithms, and the parameter settings.

1) Databases: The following five widely used color face
databases are employed for experiments.

a) AR face database [24]: It contains frontal color face
images of 126 people recorded in two sessions. In each
session, a neutral color face image is followed by images with
different expressions and illumination, and images occluded by
sunglasses and scarf (three images per condition). We employ
a popular subset of AR containing 100 subjects [45], and
hence, 2600 images in total are used. Sample images of one
person from AR are given in Fig. 2(a).

b) EURECOM kinect database [46]: It provides color
face images of 52 people with different expressions, lighting
conditions, and occlusions. In our experiments, 728 frontal
face images are used. Sample images of one person from
EURECOM are given in Fig. 2(b).

c) Color FERET database [47]: It contains 14 126 color
face images of 1199 individuals. We collect a subset that
contains 265 subjects. Each subject has two frontal images
with intense changes of expression (the images “fa” and
“fb”). Fig. 2(c) provides example face images of one person
from FERET.

d) CMU PIE database [48]: It provides color face
images of 68 subjects with different poses, illumination,
expressions, and frames from a talking sequence. We collect a
subset (C27) of CMU PIE with, for each person, one neutral
face image, two face images with expression changes (blinking
and smiling), and four images from the talking sequence
(frames 00, 19, 39, and 59). Fig. 2(d) gives the example face
images of one person from CMU PIE.

e) Georgia tech face database [49]: It contains color
face images of 50 individuals with 15 different poses per
subject. Fig. 2(e) shows example face images of one person
from GT.

The color face images in AR, EURECOM, FERET, and
PIE are aligned and cropped based on the location of eyes.
Then, all face images including that in Georgia tech face
database (GT) are resized to 32 × 32 pixels. Each database
is divided into a training set and a testing set. Optimal
projection basis vectors are learned from the training set,
and the testing samples are projected onto the basis vectors
afterward. The projected testing samples are classified based
on the nearest-neighbor classifier using l1-norm distance.

2) Competing Algorithms: We compare the performance
of 2D-QPCA and 2D-QSPCA with 13 state-of-the-art
algorithms, namely, PCA [1], SPCA [9], linear discrimi-
nant analysis (LDA) [50], 2D-PCA [3], 2D-PCA-L1 [7], 2D-
PCA-L1S [14], G2D-PCA [15], MPCA [28], MSPCA [29],
QPCA [25], quaternion LDA (QLDA) [25], R2D-QPCA [32],
and 2D-BPCA [23].

To represent color face images, MPCA and MSPCA utilize
the third-order tensors, QPCA and QLDA use quaternion
vectors, and 2D-BPCA utilizes reduced biquaternion matrices,
while R2D-QPCA, 2D-QPCA, and 2D-QSPCA use quaternion
matrices. Other algorithms employ the real domain 2D matri-
ces or 1D vectors to represent samples. We extend them to
process color images by concatenating the representations of
three color channels into large vectors or matrices.

3) Parameter Settings: In the following, we specify the
detailed parameter settings in the competing algorithms.

a) Parameters for 2D-QSPCA: To avoid the potential
colinearity problem, we set λ2 = 0.001.

The sparsity of the basis of 2D-QSPCA is controlled via
the soft-thresholding process in Algorithm 2. According to
(25), the threshold is set to σ = (λ1, j/ρ). In this paper,
we do not explicitly preassign the value of λ1, j . Instead,
we specify the cardinality (the number of nonzero elements,
denoted by card) of the basis. Specifically, we sort the l2-norm
of the columns of R in a descending order and then set σ as
the (card + 1)th largest value of sorted norms. Thus, after
thresholding, only card columns of Z are kept, and the other
columns are discarded. This way, when transferring back to
the quaternion space, we have exact card nonzero quaternion
elements per basis vector.

The alternating minimization algorithm (Algorithm 3) stops
when the l2-norm of the residual for each column of β is
smaller than εouter = 10−3, and the stopping criterion of
Algorithm 2 is set to εpri = εdual = 10−3.

b) Setups for peer algorithms: For PCA, SPCA, and
QPCA, the projection dimension (k) is individually selected
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TABLE II

EXPERIMENT RESULTS ON NONOCCLUDED COLOR FACE IMAGES

from 10, 20, 30, . . . , h, where h is the number of training sam-
ples; for LDA and QLDA, k is selected from 10, 20, 30, . . . ,
ind, where ind is the number of individuals; for MPCA and
MSPCA, the row (kr ) and column (kc) dimensions are set to
kr = kc, and they are selected from 1, 2, 3, . . . , 32, while the
color dimension is chosen from 1, 2, 3; for other 2D methods,
k is set to 2, 4, . . . , 32.

We then need to consider the sparsity of the projection
basis. For SPCA, the number of nonzero elements (cardi-
nality, denoted by card) per basis vector is chosen from
50, 100, . . . , 1024, where 1024 = 32×32 is the dimension of
the input samples after vectorization; for other sparse methods,
card is set to 2, 4, . . . , 32. In all experiments, card is fixed
for all basis vectors, namely, card = card1 = · · · =
cardk . The sparsity of the basis vectors in 2D-PCA-L1S
and G2D-PCA is controlled via the coefficients of the spar-
sity penalties. In our comparisons, we test all recommended
coefficients.

For all competing algorithms, we report the best recogni-
tion rates, the corresponding dimension of features, and the
cardinalities of basis vectors.

B. Recognition Performance

We compare the performance of 2D-QPCA and 2D-QSPCA
with that of the state-of-the-arts. Generally speaking, (1) on
clean color face images, 2D-QPCA is comparable to the
state-of-the-arts and 2DQSPCA outperforms them; (2) on
occluded color face images, 2D-QPCA is less effective,
whereas 2D-QSPCA shows consistently superior performance;
(3) 2D-QPCA and 2D-QSPCA are suitable for varying expres-
sions but they are less effective for illumination and pose
changes. The detailed experiment results are presented as
follows.

1) Performance on Clean Face Images: The following four
experiments compare the classification accuracies of different

algorithms on the nonoccluded color face images. The results
are reported in Table II.

1) For AR, we use the nonoccluded color face images in
session one to train the projection basis. The correspond-
ing seven images in session two are used for testing.
The 2D-QSPCA has the highest recognition rate, while
2D-QPCA ranks third in this comparison.

2) On EURECOM, similar to AR, the nonoccluded color
face images from session one and session two com-
pose the training set and the testing set, respectively.
The 2D-QSPCA has the best performance, followed by
2D-QPCA and MSPCA.

3) For FERET, we test the performance of different algo-
rithms against the small sample size problem. Only
one color face image per person is used for training.
The 2D-QSPCA and 2D-QPCA rank first and sec-
ond, respectively, validating their effectiveness when the
number of training samples is small. This is because the
proposed 2D-QSPCA and 2D-QPCA essentially work in
the column direction of color images, and thus, the size
of samples is sufficient compared with the dimension of
samples. Moreover, setting λ2 > 0, the proposed QSR
model for 2D-QSPCA can further avoid the potential
colinearity problem [38].

4) On CMU PIE, similar to FERET, we learn the projection
basis from only one color face image per person and
test the recognition performance with other six images.
The 2D-QPCA and 2D-QSPCA have comparable perfor-
mance, and they are much better than their competitors.

2) Performance on Partially Occluded Face Images: To
evaluate the robustness of competing algorithms, we learn
the projection basis from nonoccluded color face images and
examine their performance on classifying color face images
with 1) natural occlusions and 2) synthetic occlusions.

In the first experiment, we examine their robustness to
real-world occlusions. Two databases are used. For AR,
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TABLE III

EXPERIMENT RESULTS ON NATURAL-OCCLUDED COLOR FACE IMAGES

Fig. 3. Recognition rates under various contents of occlusions.

we use the 14 nonoccluded face images for training and the
12 natural-occluded images for testing (occluded by sunglasses
and scarf). Similarly, for EURECOM, the training set is
composed of eight nonoccluded face images per person, and
the testing set contains the rest occluded face images (occluded
by glasses, sunglasses, hands, and white paper). Table III
presents the best recognition rates of all methods. We find that
2D-QSPCA has the best performance among all competing
algorithms, and the sparse algorithms have improvements over
their nonsparse counterparts.

In the following two experiments, we manually add syn-
thetic occlusions on the testing image samples. The AR
database is employed. Seven nonoccluded color face images
from session one are used for training, and seven nonoccluded
images from session two are added with different kinds of
synthetic occlusions for testing.

We first examine the robustness of different algorithms
over varying contents of occlusions. The occlusions are black
blocks, white blacks, color squares, and random meaningful
images, respectively. Each occlusion is scaled to 25% of the
size of the color face images and is imposed at a random
location, as illustrated in Figs. 3 and 4. According to Fig. 3,
2D-QSPCA achieves the best performance for all kind of
occlusions.

To further investigate the robustness of competing algo-
rithms, we add random white-and-black blocks with different
sizes (from 10% to 50% of the size of the color face images)
onto the testing images. The blocks are imposed at random

Fig. 4. Color face images occluded by different perceptually meaningful
images.

Fig. 5. Recognition rates with varying portions of occlusions.

positions. Fig. 5 shows the recognition rates of all algorithms.
As can be seen, 2D-QSPCA has consistently best performance
among all experiments

3) Performance Under Varying Expressions, Illumination
and Poses: In this section, we examine the performance of
the competing algorithms under different conditions. The AR
database is used to evaluate the performance under variations
in expressions and illumination. In both tests, two neural color
face images per person are used for training, and the six
images with corresponding variations are used for testing.
GT is used to examine the performance with pose changes.
For each person, we use the first seven color face images for
training and the rest images for testing. The best recognition
rates of different algorithms are reported in Table IV. These
results show that 2D-QPCA and 2D-QSPCA are suitable
for recognizing color face images with varying expressions,
and that they are less effective for capturing variations of
illumination and poses. In addition, operating on image
columns and rows [5], [33], respectively, our 2D-QPCA and
R2D-QPCA [32] are suitable to capture different patterns.
Our 2D-QPCA performs better with varying expressions and
illumination, while R2D-QPCA deals well with pose changes.
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TABLE IV

EXPERIMENT RESULTS UNDER VARYING EXPRESSIONS, ILLUMINATION, AND POSES

TABLE V

NOTATION SUMMARY FOR MCNEMAR’S TEST

C. Statistical Evaluation of Recognition Performance

Section V-B demonstrates that 2D-QPCA is comparable to
the state-of-the-art methods and 2D-QSPCA outperforms them
in most cases. In this section, we statistically evaluate whether
the improvement of 2D-QSPCA over the best competing
algorithm is significant. Following [51], the McNemar’s test is
used for the comparison of different algorithms. The notations
for McNemar’s test are listed in Table V.

We extract SF and FS from 2D-QSPCA and the best
peer algorithm. The null hypothesis H0 is the probability of
observing SF equals FS. When the p-value of H0 is small
enough, H0 will be rejected and the probability of observing
SF will be statistically higher than that of observing FS. Thus,
2D-QSPCA obtains statistically significant improvement over
the best peer algorithm. The p-value of H0 is calculated as

p =
nFS∑

i=0

n!
i !(n − 1)!0.5n. (30)

As recommended in [51], H0 will be rejected when p <
1e − 4. For the experiments in Section V-B, we report the
number of times when SF and FS are observed and the
corresponding p-values in Table VI. The experiments on
varying illumination and poses are excluded since 2D-QSPCA
does not yield the best performance. The results of McNemar’s
test indicate that 2D-QSPCA is significantly better than the
best peer algorithm in most cases.

VI. DISCUSSION AND COMPARISONS

To provide a comprehensive understanding of the proposed
algorithms, this section discusses the properties of 2D-QPCA
and 2D-QSPCA and compares them with several newly pro-
posed algorithms.

A. Properties of 2D-QPCA and 2D-QSPCA

In this section, we first explore the convergence property
of 2D-QSPCA. Moreover, we also compare 2D-QPCA with
2D-QSPCA considering their: 1) computation costs; 2) dis-
criminability for classification; and 3) relationship between
classification accuracy and feature dimension. These obser-
vations coincide the experiments in Section V-B. That is,
for classification: 1) the sparse regularization in 2D-QSPCA
improves its discriminability and 2) the best recognition rates
of 2D-QPCA and 2D-QSPCA are generally obtained with
approximately half of the original dimensions.

1) Convergence of 2D-QSPCA: To solve 2D-QSPCA,
we develop an alternating minimization algorithm
(Algorithm 3). Fig. 6(a) and (b) verifies that Algorithm 3
converges within a few iterations. In each iteration, k
subproblems are optimized using Algorithm 2, which
is designed under the complex ADMM framework. The
convergence of the complex ADMM algorithm has been
studied in [40]. Fig. 6(c) and (d) confirms the convergence of
Algorithm 2.

2) Computational Cost: To evaluate the efficiency of the
proposed algorithms, we examine the computational costs
of 2D-QPCA and 2D-QSPCA. For 2D-QPCA (Algorithm 1),
it requires O(hnm2) operations to calculate �̇ and the cost
of applying QED to �̇ is at most O(m3). Therefore, the total
computational cost of 2D-QPCA is O(hnm2 +m3). Consider-
ing 2D-QSPCA (Algorithm 3), the computational cost of each
step is listed in Table VII. As we can see, compared with
the computational cost of β j -update: 1) the costs of updating
Z, y, and adjusting ρ are negligible and 2) the cost of β-
update is negligible compared with that of α-update. Suppose
that the number of iterations of alternating minimization is T1,
the number of iterations for β-update is T2, and there are k
basis vectors, the total computational cost of 2D-QSPCA is
O(hnm2 + kT1T2m3).
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TABLE VI

MCNEMAR’S TEST ON 2D-QSPCA AND THE BEST PEER ALGORITHM

TABLE VII

COMPUTATIONAL COST OF EACH STEP IN 2D-QSPCA

Fig. 6. Convergence analysis of 2D-QSPCA. (a) Recognition rates versus the
number of iterations in Algorithm 3. (b) l2-norm of the residuals of the first
three columns of β in Algorithm 3. (c) Recognition rates versus the number
of iterations in Algorithm 2. (d) l2-norm of the residuals of the first column
of β in Algorithm 2.

3) Discriminability for Classification: Projecting input sam-
ples onto their basis vectors, 2D-QPCA and 2D-QSPCA
transform the color face images into different feature spaces.
A discriminative feature space should contribute to the classi-
fication of color face images. That is, given a testing sample,
its distances to the training samples of the same class should
be small, while the distances to the training samples of
different classes should be large. To quantitatively evaluate
the discriminability for the task of classification, we define
the relative distance θ as the ratio of two terms: the minimum
distance to the uncorrect classes over the minimum distance

to the correct class. If Ẋi is a testing color face image from
class c, i.e., Ẋi ∈ c, θ(Ẋi ) is calculated as

θ(Ẋi ) =
min

j
[d(Ẋi , Ẋ j )]

min
k

[d(Ẋi , Ẋk)]
(31)

for all Ẋ j /∈ c and all Ẋk ∈ c, k �= i . d(Ẋi , Ẋ j ) measures
the l1 norm distance between Ẋi and Ẋ j . Since we adopt the
nearest-neighbor classifier for our experiments, it is obvious
that if θ > 1, Ẋi will be correctly classified; otherwise,
it will be misclassified. The discriminability of 2D-QPCA and
2D-QSPCA is examined under two conditions: classification
on: 1) nonoccluded color face images and 2) color face images
occluded by random white-and-black blocks. The blocks are
set to 50% of the size of the color face images. We plot
the average values of θ for all classes (persons) from AR
database in Table VIII. The larger distance (θ ) is the better
discriminability achieves. The 2D-QSPCA achieves the largest
θ using only a few nonzero elements (denoted by card) for
each base. The results demonstrate that the sparsity constraints
improve the discriminability of 2D-QSPCA for classification.

4) Classification Accuracy Versus Feature Dimension: The
2D-QPCA and 2D-QSPCA can be used to extract features
from color images while reducing the dimension of features.
To examine the relationship of the classification accuracy and
the dimension of features, we record the recognition rates
of 2D-QPCA and 2D-QSPCA with varying dimensions. The
results are plotted in Fig. 7. Both 2D-QPCA and 2D-QSPCA
achieve satisfactory recognition rates within half (less than
16*32) of the original dimensions (32*32). We observed that
the recognition accuracy does not monotonously increase with
the dimension of features. This is because some insignificant
variations are characterized into these dimensions.
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Fig. 7. Classification accuracy versus feature dimension.

TABLE VIII

DISCRIMINABILITY OF 2D-QPCA AND 2D-QSPCA
FOR CLASSIFICATION

We also find that 2D-QSPCA stably achieves good per-
formance using basis with high sparsity, e.g., less than 10
nonzero elements (cardinality) are enough for each basis
vector of 2D-QSPCA, while the basis vectors of 2D-QPCA
usually contain 32 nonzero elements.

B. Comparison

In this section, we compare 2D-QPCA and 2D-QSPCA
with several newly proposed methods, namely, BPCA-based
methods, QLDA, and PCANet.

1) Comparison With BPCA-Based Methods: BPCA and
2D-BPCA [23] represent color images using reduced biquater-
nion vectors and matrices, respectively. The 2D-BPCA outper-
forms BPCA when applied to color images. This is because
2D-BPCA can well preserve the spatial structure of color
images and is computationally more efficient by avoiding the
processing of HD vectors.

Similar to 2D-BPCA, 2D-QPCA and 2D-QSPCA use 2D
matrices to preserve the spatial structure of color images
and to relieve the computation burden. Both quaternions and
biquaternions are based on the theory of Clifford algebra.
However, they have different definitions of their operations,
e.g., multiplication, division, norm, and conjugation. The
multiplication of quaternions is noncommutative while the
multiplication of reduced biquaternions is commutative. Thus,
the reduced biquaternions have the advantage in computing
multiplication, whereas quaternions are more efficient when
calculating the norm and conjugation [23]. Due to different
mathematical operations, in the application of color face
recognition, BPCA-based methods can well capture the pose
changes [23] while 2D-QPCA and 2D-QSPCA are more suit-
able for expression and illumination variations. In addition,
benefited from sparse regularization, 2D-QSPCA is robust for
partial occlusions, while BPCA-based methods are not.

2) Comparison With QLDA: The 2D-QPCA and 2D-
QSPCA are unsupervised techniques for dimension reduction,
while QLDA [52] is a supervised technique. To extract fea-
tures from color images, they all use QR to preserve the

TABLE IX

COMPARISON OF 2D-QPCA AND 2D-QSPCA WITH PCANET

cross-channel correlation. However, they explore different per-
spectives of the samples. QLDA exploits the labels (classes) of
the samples and aims to find the “discriminative” components
to distinguish these classes [45]. Meanwhile, without consid-
ering the labels (classes) of samples, 2D-QPCA aims to obtain
the “principle” components of all samples under the constraint
of least-squares error; 2D-QSPCA seeks the “principle” com-
ponents with an additional assumption that the projection basis
should be sparse to improve classification robustness.

3) Comparison With PCANet: Recently, network-based
algorithms show superior performance over the statistical
methods for face recognition. Among them, PCANet [53] is
a deep learning network that employs the PCA technique
to learn its filter banks. It benefits from the architecture of
cascade networks and, thus, extracts high-dimension features.
Meanwhile, 2D-QPCA and 2D-QSPCA are statistical methods
to find compact representations of the data while reducing the
dimension of features.

Table IX shows the comparison of the performance
of 2D-QPCA and 2D-QSPCA with that of PCANet on
the clean AR, FERET, PIE, and AR with different por-
tions of occlusions. The original PCANet was trained on
multiPIE [54]. However, we did not get the access to this data-
base. For fair comparison, we train PCANet using the training
sets of the aforementioned databases, as we described in
Section V-B. As can be seen, PCANet outperforms 2D-QPCA
and 2D-QSPCA in recognizing clean face images and the
face images with moderate occlusions; however, 2D-QSPCA
is more robust than PCANet when the face images suffer from
a large portion of occlusions.

VII. CONCLUSION

In this paper, we developed a novel QRR model for
2D-QPCA. Different from the QCM models [25], [32] whose
solutions are rigid and inflexible, the QRR model, as a general
framework, can be combined with extra constraints to fit
different applications. Including sparse regularization, we fur-
ther proposed a QSR model for 2D-QSPCA to improve the
robustness of 2D-QPCA. We also designed a novel algorithm
to solve this QSR model under the framework of the complex
ADMM. Extensive experiments on color face recognition
verified the effectiveness of 2D-QPCA and 2D-QSPCA.
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Although the successful application in color face recogni-
tion has been investigated, there are several limitations for
the proposed algorithms. The 2D-QPCA is not robust for
classification. The 2D-QSPCA solves this limitation. How-
ever, because 2D-QSPCA works in the column direction of
color images, after sparse projection, it can discover only
the underlying row patterns. Thanks for the flexibility of the
QRR model, our future work will investigate the structured
sparsity-induced norms [55] to regularize the QRR model to
correctly identify structured patterns.

APPENDIX

PROOF OF THEOREM 1

We rewrite (13) to its equivalent complex form and prove
it in complex space

2

(
h∑

i=1

‖Ẋi − ȦḂ∗Ẋi‖2
F + λ2‖Ḃ‖2

F

)

=
h∑

i=1

‖χẊi
− χȦχḂ∗χẊi

‖2
F + λ2‖χḂ‖2

F . (32)

Let

α = χȦ, β = χḂ, φi = χẊi
, i = 1, . . . , h.

Equation (32) can be represented as

h∑

i=1

‖φi − αβ∗φi‖2
F + λ2‖β‖2

F

=
h∑

i=1

Tr[φ∗
i (I − αβ∗)∗(I − αβ∗)φi ] + λ2Tr(ββ∗)

= Tr

[

(I−βα∗)(I−αβ∗)
(

h∑

i=1

φiφ
∗
i

)]

+λ2Tr(ββ∗). (33)

Let

ϕ =
h∑

i=1

φiφ
∗
i .

Equation (33) can be expressed by α, β, and ϕ

Trϕ − Tr(α∗ϕβ) − Tr(β∗ϕα) + Tr[β∗(ϕ + λ2I)β]. (34)

Equation (34) is a complex-valued scalar function (the trace
function yields scalar), and the optimal value of (34) can be
achieved using the Wirtinger derivatives [56], [57].

For a fixed α, differentiating (34) with respect to β∗ and
formally treating β as a constant vector, we have

∂ f

∂β∗ = −ϕα + (ϕ + λ2I)β. (35)

Setting (35) to 0 gives the optimal β as

β̂ = (ϕ + λ2I)−1ϕα. (36)

Substituting (36) back to (34) gives

Trϕ − Tr{α∗[ϕ(ϕ + λ2I)−1ϕ]α}. (37)

Therefore,

α̂ = arg max
α

Tr{α∗[ϕ(ϕ + λ2I)−1ϕ]α}

s.t. α∗α = I2k . (38)

The optimal columns of α are the eigenvectors of ϕ(ϕ +
λ2I)−1ϕ.

Assuming that the Hermitian matrix ϕ admits an eigende-
composition, ϕ = W�W∗, we have

ϕ(ϕ + λ2I)−1ϕ = W
(

�2

� + λ2I

)

W∗. (39)

Let α = [α1, . . . , α2k] and W = [w1, . . . , w2k]. Then, α̂ j =
±w j , j = 1, . . . , 2k. Recall that β̂ = (ϕ + λ2I)−1ϕα. Let
β = [β1, . . . , β2k]. Then, (β̂ j/‖β̂ j‖2) = ±w j , j = 1, . . . , 2k.

We also have

1

h
ϕ = 1

h

h∑

i=1

χẊi
χẊ∗

i
= χ�̇. (40)

Thus, ϕ and χ�̇ have the same eigenvectors. Because the
columns of β are proportional to the eigenvectors of ϕ, they
are also proportional to the eigenvectors of χ�̇, where �̇ =
∑h

i=1 Ẋi Ẋ∗
i is the QCM of the input quaternion samples.

Thus, we get the following results:
1) The optimal columns of β is proportional to the eigen-

vector of χ�̇.
2) β and χ�̇ are the complex adjoint forms of Ḃ and �̇,

respectively. Hence, the eigenvectors of Ḃ and �̇ can be
recovered from the eigenvectors of β and χ�̇.

3) The eigenvectors of �̇ are the solution of the QCM
model [see (11)] of 2D-QPCA.

Let the columns of [v̇1, . . . , v̇k] be the projection bases
of 2D-QPCA and Ḃ = [ḃ1, . . . , ḃk ]. We have v̇ j =
(ḃ j/‖ḃ j ‖2), j = 1, 2, . . . , k.
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